This module is designed to help you explore how math affects your life each day.

1. Choose A or B or C and complete ALL the requirements.
 A. Watch an episode or episodes (about one hour total) of a show that involves math or physics. Then do the following:
 (1) Make a list of at least two questions or ideas from what you watched.
 (2) Discuss two of the questions or ideas with your counselor.
 B. Read (about one hour total) about anything that involves math or physics. Then do the following:
 (1) Make a list of at least two questions or ideas from what you read.
 (2) Discuss two of the questions or ideas with your counselor.
 C. Do a combination of reading and watching (about one hour total) about anything that involves math or physics. Then do the following:
 (1) Make a list of at least two questions or ideas from what you read and watched.
 (2) Discuss two of the questions or ideas with your counselor.

2. Complete ONE adventure from the following list for your current rank or complete option A or B. (If you choose an Adventure, choose one you have not already earned.) Discuss with your counselor what kind of science, technology, engineering, and math was used in the adventure or option.
 Wolf Cub Scouts Bear Cub Scouts Webelos Scouts
 Code of the Wolf Robotics Game Design

 Option A: Complete both of the following: (a) Conduct an opinion survey through which you collect data to answer a question and then show your results with a chart or graph. For example, what is the favorite food of the scouts in your den (chart how many like pizza, how many like cookies, etc.). (b). Conduct and keep a record of a coin toss probability experiment. Keep track of at least 25 tosses.

 Option B: Complete both of the following: (a) Interview four adults in different occupations and see how they use measurement in their job. (b) Measure how tall someone is. Have them measure you. Complete in both inches and centimeters.

3. Explore TWO options from A or B or C and complete ALL the requirements for those options. Keep your work to share with your counselor. The necessary information to make your calculations can be found in a book or on the Internet. (See the Helpful Links box for ideas.) You may work with your counselor on these calculations.
A. Choose TWO of the following places and calculate how much you would weigh there.
 (1) On the sun or the moon
 (2) On Jupiter or Pluto
 (3) On a planet that you choose
B. Choose ONE of the following and calculate its height:
 (1) A tree
 (2) A house
 (3) A building of your choice
C. Calculate the volume of air in a room. Make sure your measurements have the same units—all feet or all inches—and show your work.

4. Secret Codes
 A. Look up, then discuss with your counselor each of the following:
 (1) Cryptography
 (2) At least three ways secret codes or ciphers are made
 (3) How secret codes and ciphers relate to mathematics
 B. Design a secret code or cipher. Then do the following:
 (1) Write a message in your code or cipher.
 (2) Share your code or cipher with your counselor.

5. Discuss with your counselor how math affects your everyday life.
1-2-3 Go!
Counselor edition

This module is designed to help you explore how math affects your life each day.

1. Choose A or B or C and complete ALL the requirements.
 A. Watch an episode or episodes (about one hour total) of a show that involves math or physics.
 Then do the following:
 (1) Make a list of at least two questions or ideas from what you watched.
 (2) Discuss two of the questions or ideas with your counselor.

 Some examples include—but are not limited to—shows found on PBS (“NOVA”), Discovery Channel,
 Science Channel, National Geographic Channel, TED Talks (online videos), and the History Channel. You
 may choose to watch a live performance or movie at a planetarium or science museum instead of
 watching a media production. You may watch online productions with your counselor’s approval and
 under your parent’s or guardian’s supervision.

 B. Read (about one hour total) about anything that involves math or physics. Then do the following:
 (1) Make a list of at least two questions or ideas from what you read.
 (2) Discuss two of the questions or ideas with your counselor.

 Books on many topics may be found at your local library. Examples of magazines include but are not
 limited to Odyssey, KIDS DISCOVER, National Geographic Kids, Highlights, and OWL or owlkids.com.

 C. Do a combination of reading and watching (about one hour total) about anything that involves
 math or physics. Then do the following:
 (1) Make a list of at least two questions or ideas from what you read and watched.
 (2) Discuss two of the questions or ideas with your counselor.

2. Complete ONE adventure from the following list for your current rank or complete option A or B. (If
 you choose an Adventure, choose one you have not already earned.) Discuss with your counselor
 what kind of science, technology, engineering, and math was used in the adventure or option.

 Wolf Cub Scouts Bear Cub Scouts Webelos Scouts
 Code of the Wolf Robotics Game Design

 Option A: Complete both of the following: (a) Conduct an opinion survey through which you collect
 data to answer a question and then show your results with a chart or graph. For example, what is
 the favorite food of the scouts in your den (chart how many like pizza, how many like cookies, etc.). (b).
 Conduct and keep a record of a coin toss probability experiment. Keep track of at least 25 tosses.

 Option B: Complete both of the following: (a) Interview four adults in different occupations and see
 how they use measurement in their job. (b) Measure how tall someone is. Have them measure you.

 Complete in both inches and centimeters.
3. Explore TWO options from A or B or C and complete ALL the requirements for those options. Keep your work to share with your counselor. The necessary information to make your calculations can be found in a book or on the Internet. (See the Helpful Links box for ideas.) You may work with your counselor on these calculations.

A. Choose TWO of the following places and calculate how much you would weigh there.

(1) On the sun or the moon

\[
\text{Earth weight (in pounds)} \times 28 (27.97) = \text{Sun weight}
\]
\[
\text{Earth weight (in pounds)} \times 0.166 = \text{Moon weight}
\]

(2) On Jupiter or Pluto

\[
\text{Earth weight (in pounds)} \times 2.36 = \text{Jupiter weight}
\]

Pluto is no longer considered a planet because it is so small. Pluto is now considered a planetoid. A human would weigh less on Pluto than on Earth’s moon.

\[
\text{Earth weight (in pounds)} \times 0.059 = \text{Pluto weight}
\]

(3) On a planet that you choose

\[
\text{Earth weight (in pounds)} \times 0.378 = \text{Mercury weight}
\]
\[
\text{Earth weight (in pounds)} \times 0.907 = \text{Venus weight}
\]
\[
\text{Earth weight (in pounds)} \times 1.000 = \text{Earth weight}
\]
\[
\text{Earth weight (in pounds)} \times 0.377 = \text{Mars weight}
\]
\[
\text{Earth weight (in pounds)} \times 2.36 = \text{Jupiter weight}
\]
\[
\text{Earth weight (in pounds)} \times 0.916 = \text{Saturn weight}
\]
\[
\text{Earth weight (in pounds)} \times 0.889 = \text{Uranus weight}
\]
\[
\text{Earth weight (in pounds)} \times 1.12 = \text{Neptune weight}
\]

Very young Cub Scouts may not be familiar with decimal numbers yet, or may be familiar with decimal numbers only up to one or two places after the decimal point. Feel free to round a given gravity multiplier to the tenths or hundredths place if this will help a Cub Scout complete the activity on his own. Alternatively, one can avoid decimals entirely by thinking in terms of ratios; for example, every 10 pounds on Earth equals about 9 pounds on Venus, so a child who weighs 60 pounds on Earth will weigh about 54 pounds on Venus.

B. Choose ONE of the following and calculate its height:

(1) A tree
(2) A house
(3) A building of your choice
C. Calculate the volume of air in a room. Make sure your measurements have the same units—all feet or all inches—and show your work.

\[\text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \]

The answer will be in cubic feet or cubic inches (ft3 or in3).

4. Secret Codes
 A. Look up, then discuss with your counselor each of the following:
 (1) Cryptography

 One of the earliest recorded uses of cryptography, the practice of hiding information, was when Roman leader Julius Caesar (100 b.c. to 44 b.c.) used a substituted letter code to hide information. Cryptography has been very useful during wars for transmitting information without revealing it to the enemy (unless the code is broken). The major use of cryptography today is with computers, especially in finance and electronic data transmissions. ATM cards, computer passwords, and personal identification numbers depend on cryptography.

 (2) At least three ways secret codes or ciphers are made
A code is a symbol or signal used to represent or communicate something else. A cipher is a way to make a secret message by changing or rearranging the letters in the message. Codes replace words, phrases, or sentences with groups of letters or numbers; ciphers rearrange or substitute letters. Examples of codes and ciphers include but are not limited to:

- **Transposition ciphers:** Rearrange the letters in a word.
- **Book code/dictionary code:** Use two copies of the same book (dictionaries work best). For each word in the code, give the page number, (and column number for a dictionary), row number, and word number. Usually it is best to use two or three digits for each coded word, using zeros as placeholders.
- **Letter shifts:** Shift every letter in the alphabet a set number of places.
- **Number substitutions:** Assign every letter a number. This can be combined with letter shifts.
- **Keyboard ciphers:** Using a keyboard, shift a set number of places.
- **Date shift ciphers:** Use a date to create a letter shift.
- **Stacked ciphers:** Combine two or more codes and/or ciphers

(3) How secret codes and ciphers relate to mathematics

Many ciphers can be broken by using what is called frequency analysis. For example, the letter “e” is the most frequently used letter in the English language. Ciphers are pairs of algorithms, rules or a set of rules to solve a problem, used to encrypt and decrypt information (make information unreadable or readable). Since the early 20th century, cryptography has made a much more extensive use of mathematics, including information theory, computational complexity, statistics, number theory, and abstract algebra.

B. Design a secret code or cipher. Then do the following:
 (1) Write a message in your code or cipher.
 (2) Share your code or cipher with your counselor.

5. Discuss with your counselor how math affects your everyday life.

2020 September